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SECTION 1

INTRODUCTION

The technique that has evolved from this research effort is

called HIM which stands for Hybrid Iterative Method. It is the

third generation of a technique that was initially researched

when Dr. G. A. Thiele was with the Ohio State University

ElectroScience Laboratory. This evolution is described below.

Starting in 1979, Kim and Thiele developed a hybrid AS-nM

technique (asymptotic moment-method technique) to find the

induced currents on the surface ot scatterers in the intermediate

frequency region [1]. These induced currents consisted ot two

parts: an "optics" current similar to (but not the same

as 2n x Ai); and a "correction" current which was the ditference

between the optics current and the true current. The correction

current was obtained via the moment method.

In 1983 and 1984, Kaye, Murthy and Thiele [2], (3]

significantly improved on the AS-MM work by eliminating the

moment method regions thereby making the method potentially

applicable to large scatterers as well as ones of modest size.

In the second generation work by Kaye, Murthy and Thiele, the

magnetic field integral equation (MFIE) was reduced to a sequence

of integral equations for both the "optics" currents and the
"correction" currents, each of which is solved by iteration. On

the other hand, in Kim and Thiele [1], the "correction" currents

were solved by the moment method which tends to limit the

electrical size of the object that may be considered. The second

generation work, then, was a purely iterative technique wherein

all the integral equations (tor both the optics currents and the

correction currents) are of the same torm and are similarly

solved via iteration.



In 1985 and 1986, Murthy, Hill and Thiele 141, [51 evolved

the third-generation technique, which is the present technique

and which is described in the next section. This third-

generation technique is called HIM for Hybrid Iterative Method.

In HIM, we incorporate the correction currents into the ansatz

for the iterative scheme itself so that there is only one current

to iterate. Thus, the iterative solution proceeds by taking the

previously iterated current and using it as the "new" current to

be improved upon. Typically, ten iterations is sufficient to

obtain a converged correct current. The second- and third-

generation techniques were mostly supported by RADC/Hanscom.

The salient features of the hybrid-iterative method (HIM)

may then be stated in the tollowing way. HIM is an iterative

algorithm to solve MFIE (magnetic field integral equation) tor

induced surface currents on a scatterer. Every iterative scneme

must be started with an initial guess. The better the initial

guess, the faster the method converges. This initial guess must

be obtained from a knowledge of the physics of the scattering

process to the extent it is known. Thus, in HIM, the physics or

the scattering process is incorporated into the solution urocess

at the outset to the extent it is possible, in the form ot an

initial guess for the current on the shadow side. This results,

directly, in the reduction of CPU time. It is to be noted that

the iteration method [2], [3] is a special case of HIM in that i t

takes the shadow-side current to be zero. For some scattering

geometries, such a crude initial guess may not be good enough to

warrant a converged soluticn. In HIM, the solution always

converges when the initial guess is other than zero.

In Section II, we develop the integral equations tor HIM and

discuss their solution by iteration. In Section III, we present

theory relevant to the initial estimates ot the shadow-side

currents tor both smooth and edged bodies. Section IV prese nts

calculated results using the theory developed in 6ection iL.

Both edged bodies, exemplitied by a square cylinder and smooth

2



bodies, exemplified by circular and elliptic cylinders are

considered. Section IV also presents our results obtained on the

Cray X-MP. In addition, ogival cylinders which involve Doth

edge- and smooth-surface diffraction, and hence constitute a

stricter test of the method, are also considered. Section V

contains the summary of the technique and points out further

avenues of research.

3



SECTION 2

GENERAL HIM THEOKY

2.1 MAGNETIC FIELD INTEGRAL EQUATION

Consider a perfectly conducting body illuminated by a plane

wave. The induced surface current density on the body at an

observation point P, as shown in Figure 1, can be computed from

the MFIE:

I(A) = 2n x fi(A) + 2n x L[J] (1)

where the operator L is defined by

L[J] f 2(A') x 'G(r) ds' (2)

The surface of the body is denoted by Z and A and A' are the

observation and source point position vectors, respectively,

on r and r Ift - A'I . The prime on the gradient operator

indicates that the differentiation is performed on the source

coordinates. The bar through the integral sign is used to denote

the principle value integral over Z. is the incident magnetic

field vector and n is the outward unit normal to the surtace

at A. G(r) is the tree-space Green's function given by

G(r) = e-J r (3)
4w r

for the three-dimensional problem and by

G(r) = L H ( 2 ) (ar) (4)
4j 0

for the two-dimensional problem. H(2) (r) is the zero-order
0

Hankel function of the second kind and a is the free space

propagation constant. The time dependence is taken to

be exp(jwt) and is suppressed throughout.

4
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2.2 CURRENTS

The first step in solving the MFIE tor the induced surtace

current density I(A) is to divide the total surtace Z of the Ooy

into E and Z , which represents the lit and shadowed regions,

respectively. The dividing line between these two regions is tne

geometrical optics shadow boundary which is defined as the locus

of points satisfying u n = 0, where u is the unit vector in the

direction of propagation of the incident tield. Then I(A) can be

expressed as follows:

- + (1 - d)s( ) (5)

where 6=1 if c.. Et and 6=0 if E s s. Eq. (1) can now be

rewritten as

= 2n x fi(A) + 2n x L[J' ] + 2n x L[ s ] . (6)

In the notation used in Eq. (6) and in subsequent equations, the

surface of integration is identified by the superscript on the

current density. We now write out Eq. (6) explicitly

for A e EX and e Es :

= 2n x Aii() + 2n x Ll ] + Zn x L[J s ]  7)

i = 2n x Ai(A) + 2n x L[I' ] + 2n x L[ s ]  (6)

The problem of solving for the induced surface current

density has now been transformed into one of solving Eqs. (7) and

(8) for I t and Is. We compute these currents in sequential

fashion in the following way.

First, let Is be an estimate of shadow current. For edged

bodies like the square cylinder, this current is obtained from

the wedge diffraction theory. For smooth bodies like circular or

elliptic cylinders, this current is obtained using Fock theory.

6



A detailed discussion of determining Is will be considered in

Section III. Thus,

ES (9)

Substituting Eq. (9) in Eq. (7) and noting that the current on

the lit side would now be an approximation to the true current

and denoting this zeroth order approximate current by 1

( 2n x fi(A) + 2n x L[ o ] + 2n x LLJs] (10)

This current is a significant improvement over the classical

physical optics (PO) current since it takes into account mutual

interaction of current on both lit- and shadow-regions in

addition to the geometricai optics (GO) field.

A shadow-side zeroth order approximate current, is, is now

defined by substituting 1  = in (8):
0

= 2n x + 2n x L[1 + 2n x L[ s  (11)

In this expression, the main contribution of the second term on

the right-hand side will be approximately -2n x Ai( ) to cancei

the first term. The Is obtained trom tq. (11) wouto oe closer to
0

the true current than our initial guess Is. Indeed, the only

inaccuracy incurred being that through the approximate vaLue

taken for the lit-side current.

Now that an approximation to the shadow-side current better

than Is is available, the next higher-order current on the litE
side may be obtained. This lit-side current may be used to

further improve the shadow-side current. Thus, higher-order

currents may be obtained until the desired accuracy is achieved.

The integral equations for the nth order currents may be derinec

as follows:

7



= 2n x (A) + L[Ji] + L[lsl (12)

= 2n x Ai(A) + L[J4] + [J(13)

n = 1, 2 . . .

3s is the solution of Eq. (11).
0

In the iterative technique described in an earlier paper

[2], the "optics" currents were improved upon by the addition or

correction currents. The technique described here is

mathematically equivalent to the correction current ansatz or

that iterative technique and at the same time is simpler trom the

programming point of view.

2.3 CONVERGENCE CRITERION

We now give a criterion for the convergence of the sequence

of integral equations. This criterion is based upon how

accurately our solution satisfies the MFIE. Using Equation (5),

we define,

= 6 J () + (1 - 6) s( ) (14)nn n

Then the current, Jn(A), is obtained by substituting Jn(A) in

MFIE. That is,

Jn(A) = 2n x Ai(A) + 2n x L[Jn(A) ]  15)

If n( ) were to be exact, then Jn(k) Jn (A). The "Oiterence"

between Jn(A) and in(A) is a measure of the aegree of accuracy or

the solution after n-orders of iteration. Noting that the

currents are specified as a set of N points, the average

error, e, between Jn and Jn is defined to be,

8



1 N . -J 2 1/2 (16
n rN i n, - in,i (16)

If the error en is less than a preselected value, the sequence

may be considered to have converged.

Thus, the hybrid-iterative method (HIM) computes the

currents on the lit and shadow regions in sequential tashion

starting with an initial estimate tor the shadow current. ALL

the integral equations are ot the same rorm and are, in tact,

Fredholm integral equations of the second kind. hence, all these

integrals may be solved by iteration as discussed in 1Z1, 13J.

9



SECTION 3

INITIAL CURRENTS

An initial estimate of the current on a scatterer with

surface discontinuities like a square cylinder is obtained from

the knowledge of currents on a wedge. For a scatterer with

smooth surface, Fock theory may be used to obtain the initial

estimate of the shadow-side current.

3.1 SHADOW-SIDE CURRENT ON A WEDGE

Consider the wedge shown in Figure 2 illuminated by a TE-

plane wave. When the angle ot incidence 0i is such that the

shadow boundary is not "close" to race 6, the current on race t

is given by [5]

Ho
Js= - .0 K_(x B) e -  tB o nir (17)

N o (n-l)r -

10
where

K_(x / j  j.2 w t2

K(x) = V eJ f e - jt dt
iTX

xB = V 2 aPB (cos .1 + cos !-)/sin
n n n

Ho = amplitude of the incident magnetic field

p = distance from the edge

n = (2 -

a interior wedge angle.

When the angle of incidence is such that a shadow boundary is

close to Face B, the current is given by,

10



A

F'igure 2. Wedge iluminaced bY a TN-plane wave.
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= -2Ho[B K (Bx8 ) + sgn(cot& + ) K (xB+)] e - j  p  B

0 4 P (18)
(n-1)ir - 4 jni (n-1)n

10

where B = (2 - 1)

n

X B = V ap/2 2n cot

= (w oi)/2n

Thus, Equations (17) and (18) express the currents on the

shadow side of a wedge in closed form. These expressions involve

the well-known modified Fresnel runctions, K_(x) [6], and are

easy to compute. Figure 3 presents shadow-side currents on weagt

computed using the above expressions as well as the exact

solution obtained from the eigenrunction solution. Note that the

agreement is excellent.

These currents on the wedge may readily be used to obtain an

initial estimate of the shadow-side current on a square

cylinder. Consider the geometry of a square cylinder shown in

Figure 4. Faces 2 and 3 are in the shadow region. Faces I and 2

constitute a wedge illuminated with the angle of incidence

being i,B" The current on Face 2 may be approximated by the

current on a corresponding wedge with a r/2 and = #iB"In

a similar fashion, the current on Face 3 also may be

approximated.

3.2 SHADOW-SIDE CURRENT ON A SMOOTH 60UY

An estimate for current on the shadow side or a smooth

convex cylinder may be obtained by using Fock theory 4J.

Referring to Figure 5, Qi and Q2 are points of grazing incidence

and Q0 is the observation point where current is to De round.

The field at Q0 is due to two creeping waves launched trom q, ana

12
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as

Figure 5. Geometry for a smooth convex cylinder.
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Q2 and traveling the distance of t1 and t2 on the surtace,

respectively. Then, for TE polarization, using the generalized

Fock theory [71, [8], one obtains

SI -jt 2(Q0 ) = Ai(Q 1 )e g(%) + Ai(Q2)e g( 2 ) (19)

where

Q0

12 M(t') dt' (20)

Q1I,2 Pg (t')

MWt') [B= [ g(t')/2]1/3 (21)

Q0
= f dt' (22)

Q1,2

.3

g( ) = e 3 J- j e-Jt dt (23)
VW c w1 (t)

p (t') is the radius of curvature at t' and the Airy tunction

w1 (t) and the contour "c" are defined in [4].

Once the magnetic field is found, the current on the surface

is deter-mined from

Sn x . (24)

For the specific case of a circular cylinder excited by a TE-

plane wave, the initial estimate for the shadow-side current, s

is given I y

= lS f (25)

with 1 being given by

17



-jat -j at

f = 0te g(&) + e g( Z)} (2b)

where 1
= (8a)1/3 1

C 2 a

2 = (aa)1/3 
t2

2 a

a = radius of circular cylinder. (27)

Using Equations (25) to (27), Fock current in the shadow

side has been computed for a circular cylinder of radius 3.2X and

is shown in Figure 6. Notice that expressions given here are

valid only for TE polarization. Similar expressions can be

easily obtained for TM polarization.

I1
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SECTION 4

NUMERICAL EXAMFLES

In this section, we illustrate the technique described in

earlier sections. We deal with scatterers with surface

discontinuities as well as smooth surfaces. Thus, 1) scatterers

with edges are exemplified by a square cylinder; 2) scatterers

with smooth surfaces are exemplified by circular and elliptical

cylinders; and 3) scatterers with a smooth surface joined to an

edge are exemplified by the ogival cylinder.

Before the theory presented in earlier sections can be used

to compute the induced currents, some numerical aspects must be

considered. For scatterers with edges, special attention must be

paid to evaluating the integrals for current very close to the

edge. This analysis has been dealt with elsewhere [2], [3] and

will not be repeated here. For scatterers with smooth surfaces,

it is necessary to evaluate integrals wherein the integration and

observation points may coincide. In such caser, the Green's

function becomes singular and one must omsider the principle

value ot the integral. For two-dimensional geometries, however,

it can be shown [2], [3] that the integrands ,ave a tinite Limit.

The following results will be tor zeroth order, tirst-oroer

and second-order currents. It is necessary to understand what

this means. The zeroth-order currents are defined by Lqs. (10)

and (11). The zeroth-order currents are themselves obtained by

iteration, say ten iterations. Once a converged zeroth-order

current has been obtained according to the criterion of Eq. (16),

the zeroth-order current, is used in Eqs. (12) and (13) to obtain

the first-order currents via iteration, etc.

4.1 SQUARE CYLINDER

Two examples are presented here. In both cases, the size or

the cylinder is the same, viz, w = 3.7x. However, the angles or

incidence, .,i are different. The case, = 1150, has been

20



dealt with in an earlier report [3]. We study the same case here

using our hybrid-iterative method (HIM). It was necessary in [3]

to compute four orders ot correction currents to obtain a

sufficiently accurate result. With the tiIM, zeroth order

currents themselves give a sufficiently accurate solution. we

also present the tirst-order currents for comparison. Figures 7

to 11 show the results for w = 3.7X and 0i = 1150.

We also consider the case wnen i = 950. Note that in this

case, Face 2 of the square cylinder is almost, but not quite, in

the visible region. As can be seen from the final result, the

current on this face is quite appreciable and may not be

neglected initially as was done in the iterative technique [2],

[3]. Figures 12 to 16 show results corresponding to this case.

In this more demanding case it was necessary to compute up to the

second-order currents.

4.2 SCATTERERS WITH SMOOTH SURFACE

In [2], Kaye, Murthy and Thiele used the iterative method

(IM) to compute the surface currents on a circular cylinder ot

radius 3.2X. These computations include the tirst-order

correction current and are characterized by a ripple. For the

same cylinder, we computed induced currents using the hIM. These

results are presented in figures 17 to 19. Note that there is no

ripple and that the agreement between our results and the exact

eigenfinction solution is excellent. Furthermore, we needed to

compute only up to the zeroth-order currents. Atter zeroth

iteration, HIM yielded an error of e (HIM) = 0.0018. The VAX

CPU time taken is 2 minutes and 18 seconds. For the same case,

with iteration method, E0 (IM) = 0.054 and (IM) = 0.047.

Thus, even after the first-order calculation, the average error

for IM is significantly larger than that for HIM. The CPU time

required for IM up to first-order calculations is three minutes

and 45 seconds. All computations were carried out on a VAX

11/780.
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In order to demonstrate that our technique works well ror

"small" bodies, we also considered a 0.2X radius circular

cylinder in [9]. We computed both zeroth-order and tirst-order

currents with excellent agreement between our results and the

exact results obtained using the eigentunction solution.

The computer code we have written is general and may De used

to compute the induced currents on scatterers with an arbitrary

convex cross-section. To demonstrate this generality, we have

also considered an elliptic cylinder as shown in Figure 2u witht

semi-major and semi-minor axes being 1.5A and 1.0A,

respectively. Our results are compared with those of the method

of moments (MM). A result is shown in Figure 21. Note the

excellent agreement between the results obtained with the MM and

and with the hybrid-iterative technique.

4.3 SCATTERERS WITH A SMOOTH SURFACE JOINED TO AN EDGE

The ogival cylinder is an example of a smooth surface joined

to an edge. To illustrate the application of HIM to the ogival

cylinder,we will consider a 3X long (edge-to-edge) ogival

cylinder with an 800 interior "wedge" angle at each edge. Figure

22 shows the current on one side ot the ogival cylinder tor a

plane wave incident at 900. The current is of zeroth order and

the agreement is seen to be excellent. The traveling wave, ror

which the ogive is well-known, would be predicted by the current

in Figure 22. Figure 23 shows the ogival cylinder illuminated

broadside (i.e., at 00). This is a more ditticult case than

with 900 (edge on) incidence. Thus, second-order currents are

required to obtain excellent agreement.

4.4 VERY LARGE SCATTERERS

For the purpose of adapting the HIM to treat scatterers thar

are electrically large, the surface current is considered to

consist of two components: the physical optics current and the
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Figure 20. Geometry for an elliptic cylinder with semi-
major axis ita anq semi-minor "b"e. 'p. -9Q0O
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nonuniform current. The physical optics current is readily

determined. Since the nonuniform current is induced by the

diffracted field at the surface, it decays relatively quickly

from the point of diffraction. Thus, though the scatterer is

large, the region over which the nonuniform current is unknown is

relatively small. This is the basic principle behind the

reformulation ot HIM for large bodies. Additionally, the

integrals involved are in a form suitable tor evaluation by the

stationary-phase method; this form is used wherever teasible.

Thus, numerical integration is used to the Least extent

necessary. We give the specific tormulation tor a circular

cylinder in (101, though the method itself is more general than

presented there.

Figures 24 and 25 illustrate the foregoing principles by

presenting a comparison of the current between the exact

eigenfunction solutions and the calculated results obtained by

use of this reformulated scheme for the circular cylinder with

radii equal to 25 and 80 wavelengths. The stationary-phase

evaluation, in the result shown, only includes the endpoint

contribution because the stationary points are outside the

integration path. The CPU time required to run the result ot

this 25-wavelength-radius cylinder on a VAX 11/760 computer Ls

approximately eight minutes; while the CPU time required tor a

cylinder with an 80-wave'ength radius is approximately 40

minutes.

The large body tormulation ror itIM is adaptable tor use on a

super computer like th Cray X-MP. On May 19, Z0, and 21, 19d6,

we ran our program tor the large cylinder on the Cray X-mk at trle

Cray facility in Minneapolis under the sponsorship ot Cray

Research. Some rewrite of our program was necessary to permit

the compiler to vectorize the code. The results are presented in

the table which follows. Note that for the OX cylinder the VAX

time was about 2,400 seconds and that on the Cray X-MP, after

rewrite and vectorization, the CPU time was but 6.17 seconds.
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RCS
COMPUTER TIMES FOR LARGE CIRCULAR CYLINDERS

RADIUS (X) -C(X) VAX * CR(AY X-MP* KATlu

10 63 bO 0.3716

25 157 480

80 50U 2,400 b.17 369

120 750 10.5

160 1,000 15.3

200 1,250 20 .5

240 1,500 26.u

300 1,880 34.8

400 2,500 50.6

440 2,760 56-.9

TIME IN SECONDS
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While this ratio of 389 to 1 was not the largest ratio the Cray

Applications Group had ever seen, it was in the class of very

large ratios that one can achieve in going from a VAX to a

Cray. They viewed a ratio of 100 or over as very good.

Note that the small CPU times indicate that the hIM could be

used as an interactive design tool. For example, one could

design any wing profile and any radar trequency interactively

using this HIM approach.

Note that we used here the (classicai) circular cylinder

shape because we have an exact solution against which to

compare. Cylinders of other cross section shapes would have

similar running times.

4.5 PERFECTLY CONDUCTING CUBE

Figure 26 shows the geometry for a perfectly conducting

cube. Figures 27-32 show the H-plane and E-plane bistatic

scattering pattern for cubes that are 0.75X, 1.5X and 3.0X on a

side, respectively. In all cases, agreement with experimental

data furnished by RADC/Hanscom is seen to be quite good. Also

included are figures 33-36, which describes the surface current

densities on the cube faces. Figure 33 describes the magnitude

of the z-component of the initial current on the side face, while

figure 34 shows that same current aften imposition of the

M.F.I.E. It is seen that the composite effects of slope

diffraction and vertex diffraction, previously ignored, have been

introduced. Figures 35 and 36 describe current components

initially assumed to be zero. After imposing the . it is

seen that a much better, non-zero approximation results.

4.6 TM CASE FOR SqUAKE CYLINDER

Our results in Section 4.1 tor the square cylinder were tor

the TE case. Clearly, to do the cube in Section 4.5 it was

necessary to be able to calculate TM currents as well as TE
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currents. Here, in this section, we will briefly present some

results for TM currents on a square cylinder.

Figure 37 shows the magnitude of the fourth-order current on

a square cylinder 3.193X on a side. The incidence angle is

Oi = 1350 (see Figure 4). Figure 38 shows the phase. Figures 39

and 40 show similar results except that the incidence angle is

1200.
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Figure 26. Note: y - 90u backscatcer
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SECTION 5

SUMMARY

A new iterative method has been presented for computing the

current induced by plane wave excitation on conducting bodies of

arbitrary shape. In this method,the scattering body is divided

into lit- and shadow-side regions separated by the geometric

optics boundary. An MFIE is written for each region. Each MFIE

is solved by iteration (i.e., method of successive

approximations). In order to accomplish this, it is otcen

necessary to have an initial estimate of the shadow-side

current. This estimate is obtained from known physical

scattering phenomena (e.g., edge oittraction theory or kock

theory). hence, the method is called a hybrid-iterative method

(HIM).

The HIM is well-suited tor use on a super computer like tne

Cray X-MP. Results were shown for 2-dimensional objects whose

size varied from 0.6X to 440A, all with CPU times under one

minute, on the Cray. With such speed, it is possible to have a

computer code with which interactive Aero/RCS tradeotfs can be

evaluated.

The HIM method is a current-based approach to electro-

magnetic scattering. In a current-based method, the scattered

field is obtained from the induced currents. This can be

contrasted with the field-based approach (e.g., GTD) wherein the

scattered field is obtained trom the incident tield via ray

tracing without the necessity of explicitly determining the

current. For modeling large complex geometries, it is believed

that the current-based approach is better than the tield based

approach because one does not need to trace, perhaps, ftundreus or

rays and one does not need to describe geometrical surtaces t

high precision.

The hIM approach to electromagnetic scattering has evolved

from eight years of research sponsored primarily by KADC/hanscom
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with early support trom ONR as well as lesser support trom we k b

and Rockwell Sciences Center. The merits ot HIM have been well-

demonstrated for perfectly conducting uncoated two-dimensional

scatterers. A number of fundamental problems remain to be

researched, however, before the technique can be used by the KCS

community to model coated/partially coated, three-dimensional

shapes.
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